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Abstract
We study a chain of nonlinear interacting spins driven by a static and a time-dependent
magnetic field. The aim is to identify the conditions for the locally and temporally controlled
spin switching. Analytical and full numerical calculations show the possibility of stochastic
control if the underlying semiclassical dynamics is chaotic. This is achievable by tuning the
external field parameters according to the method described in this paper. We show analytically
for a finite spin chain that Arnold diffusion is the underlying mechanism for the present
stochastic control. Quantum mechanically we consider the regime where the classical dynamics
is regular or chaotic. For the latter we utilize the random matrix theory. The efficiency and the
stability of the non-equilibrium quantum spin states are quantified by the time dependence of
the Bargmann angle related to the geometric phases of the states.

1. Introduction

Advances in nanoscale fabrication of magnetic materials down
to a finite chain of individual magnetic atoms [1] triggered
a number of studies on the ground state magnetic properties
of finite, interacting spin chains [2]. For accessing the non-
equilibrium states, in a linear chain one conventionally rotates
the spins by applying a static magnetic field H0 and a variable
magnetic field h(t) along a direction perpendicular to H0 [3].
The spins affected by the fields are then deflected by an angle
θ = ω1τ which can be desirably varied by changing the
duration τ of the field h(t). Here ω1 is the amplitude of
h(t) in frequency units ω1 = h0γ (γ is the gyromagnetic
ratio). For this scheme to be viable ω1 has to be in resonance
with the system’s precessional frequency. In this paper we
consider the spin deflection in the different situation of a
nonlinear chain of interacting spins [4, 5] in which case the
precessional frequency is dynamical and changes with the
oscillation amplitude [6, 7]. Hence, a control strategy [8, 9] as
in the linear chain case entails the use of chirped fields. Here
we inspect a different route to spin control by exploiting the
stochastic nature of the spin dynamics when appropriate fields
are employed. This we show analytically in a first step. The
advantage is that no special frequency tuning is used and, more

importantly, the spin may be quasi-stable at the deflected (non-
equilibrium) angles when the field h(t) is off, which might
be of interest for quantum information applications [10–17].
The disadvantage is the limited control of the switching time.
Full numerical simulations confirm our analytical predictions:
tuning the external fields such that the underlying classical
spin dynamics is chaotic, stochastic switching occurs and a
long-time quasi-stabilization, i.e. a dynamical freezing (DF)
of the deflected states, is possible. Small fields cause only
small fluctuations around the equilibrium state. For very
strong fields, effects of magnetic anisotropy and exchange
become subsidiary and hence the dynamics turn regular and
no deflection with subsequent freezing is possible.

For a finite spin chain we uncover analytically that our
stochastic control (SC) scheme is governed by Arnold diffusion
and give an analytical expression for the Arnold diffusion
coefficient that in turn determines the timescale for SC.

To inspect the influence of the quantum nature of the spins
on our (classical) predictions we considered both the regular
and the chaotic classical regimes and evaluated the so-called
Bargmann angle which is a measure of the quantum distance
between states in the Hilbert space and can be used to signal
DF [8, 9]. Using random matrix theory we prove indeed that
SC and DF are possible at the driving field values that follow
from our classical analysis.
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Figure 1. A schematics of the interacting spin chain. The magnetic
anisotropy field sets the z direction. Two magnetic fields are applied:
a static (H0z) one along the z axis and a time-dependent field
(H0x(t)) along the x axis.

(This figure is in colour only in the electronic version)

2. Equation of motion

2.1. Liouville equation for the spin chain

Similar to the case studied in [4, 5] we consider a system that
can be modelled by a chain of N interacting (with coupling
constant J ) spin variables localized at sites j and having a
uniaxial anisotropy with the anisotropy constant β . Possible
sources of the anisotropy field are discussed in [1]. Here we
mention that the inclusion of a finite anisotropy is essential
for the existence of a finite-temperature long-range order in
the (infinitely long) chain. Further important consequences of
the magnetic anisotropy for the phenomena discussed in this
work are detailed below. The direction of the anisotropy field
defines the z axis. A static (H0z) and a time-dependent (H0x(t))
magnetic field are applied along the z and x axes, respectively
(cf figure 1). H0x(t) consists of Nk periodic pulses, i.e.

H0x(t) = εT
Nk∑

k

δ(t − kT ), (1)

where T is the period and εT is the field strength. As
demonstrated explicitly [18] (for the classical spin dynamics)
the shape (1) of the field mimics well the action of a finite-
width pulse as long as the pulse duration is smaller than the
field-free precessional period of the spins. The time integral
over the field amplitude of the finite-width pulse sets the
variable ε [18].

From the Hamilton operator [4, 5]

Ĥ =
N−1∑

j=1

J ŝ j z ŝ j+1,z + H0x

N∑

j=1

ŝ j x + H0z

N∑

j=1

ŝ j z + β

N∑

j=1

ŝ2
j z

(2)
we find the spin equation of motion (EOM) to be

∂t ŝ j = h j × ŝ j ,

h j = (
H0x, 0, J [ŝ j+1z + ŝ j−1z] + H0z + 2β ŝ j z

)
.

(3)

For large spins s j with h̄s j(s j + 1) = 〈ŝ j〉 and [Ĥ , ŝ2
i ] = 0 we

shift variables as (cf figure 1, s2
i = 1)

six = si⊥ cos ϕi; siy = si⊥ sinϕi ,

si,⊥ =
√

1 − s2
i,z .

(4)

The EOM for two spins N = 2 in terms of the canonical action
variables s1z , s2z and their conjugate angles ϕ1, ϕ2 is

ṡi z = −ε ∂V

∂ϕi
, ϕ̇i = ωi (s jz)+ ε

∂V

∂siz
,

ωi (s jz) = Js jz + 2β ŝi z + H0z, i, j ∈ {1, 2};

V :=
N∑

i=1

Vi (siz, ϕi) =
N∑

i=1

V0i(siz , ϕi)

× T
+∞∑

k=−∞
δ(t − kT ) =

N∑

i=1

si⊥ cos ϕi

× T
+∞∑

k=−∞
δ(t − kT ).

(5)

For V �= 0 the variables of actions are adiabatic invariants
and hence are slow with respect to the angle’s typical
timescale [6]. The idea now is to identify the regime of
classical chaotic dynamics which we will do below. In
this regime one may adopt a kinetic approach based on the
Liouville equation [19, 20] for the two-particle distribution
function f (t, s1z, ϕ1, s2z, ϕ2), i.e.

i
∂ f

∂ t
= (L̂0 + ε L̂1) f,

L̂0 = −iω1(s2z)
∂

∂ϕ1
− iω2(s1z)

∂

∂ϕ2
,

L̂1 = −i

(
∂V

∂s1z

∂

∂ϕ1
− ∂V

∂ϕ1

∂

∂s1z

)

− i

(
∂V

∂s2z

∂

∂ϕ2
− ∂V

∂ϕ2

∂

∂s2z

)
.

(6)

Equation (6) is of key importance for this study. Below we
use the random phase approximation and some mathematical
techniques to derive from equation (6) the Fokker–Planck
equation which allows us to explore some chaotic features of
the spin dynamics.

2.2. Fokker–Planck formulation and the onset of the chaotic
regime

Expressing f (s1z, ϕ1, s2z, ϕ2) as a Fourier series over ϕ1 and
ϕ2 we find

f (s1z, ϕ1, s2z, ϕ2) = 1

(2π)2
∑

m,n

f̄n,m(s1z, s2z)e
inϕ1eimϕ2 ,

f̄n,m(s1z, s2z) = fn,m(s1z, s2z)

× exp

[
−in

∫ t

0
ω1(t

′) dt ′
]

exp

[
−im

∫ t

0
ω2(t

′) dt ′
]
,

ω1(t
′) = ω1(s2z(t

′)), ω2(t
′) = ω2(s1z(t

′)).

(7)

Hence, solution of the Liouville equation is cast formally as
(the symbol 〈n′,m ′|L̂1(t1)|n,m〉 means the average over fast
oscillating variables)

fn′,m′(s1z, s2z, t) = fn′,m′(s1z, s2z, 0)

− iε
∑

n,m

∫ t

0
dt1 ei(n′−n)

∫ t1
0 ω1(t ′) dt ′

ei(m′−m)
∫ t1

0 ω2(t ′) dt ′

× 〈n′m ′|L̂1(t1)|n,m〉 fn,m(s1z, s2z, t1). (8)

2
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If the interaction energy with the variable field is small with
respect to the other terms in equation (2) we can expand f in
terms of the field strength ε and account for leading terms only.

The zero-order component has the form

f0,0(s1z, s2z, t) = f0,0(s1z, s2z, 0)

− iε
∑

n,m

∫ t

0
dt1 e−in

∫ t1
0 ω1(t ′) dt ′

e−im
∫ t1

0 ω2(t ′) dt ′

× 〈0, 0|L̂1(t1)|n,m〉 fn,m(s1z, s2z, 0)

+ (−iε)2
∑

n,m

∫ t

0
dt1

∫ t1

0
dt2 ein

∫ t2
t1
ω1(t ′) dt ′

eim
∫ t2

t1
ω2(t ′) dt ′

× 〈0, 0|L̂1(t1)|n,m〉〈n,m|L̂1(t2)|0, 0〉
× f0,0(s1z, s2z, 0). (9)

Now we write L̂1 as a Fourier series taking the rel-
evant frequency � = 2π

T into account, L̂1(t) =∑
p L1,p exp(ip�t), L1,−p = L∗

1,p. Inserting into (9) we find

f0,0(s1z, s2z, t) = f0,0(s1z, s2z, 0)

− iε
∑

n,m

∫ t

0
dt1 e−in

∫ t1
0 ω1(t ′) dt ′

e−im
∫ t1

0 ω2(t ′) dt ′

× 〈0, 0|L̂1(t1)|n,m〉 fn,m(s1z, s2z, 0)

+ (−iε)2
∑

n,m,p

∫ t

0
dt1

∫ t1

0
dt2 ein

∫ t2
t1
ω1(t ′) dt ′

eim
∫ t2

t1
ω2(t ′) dt ′

× 〈0, 0|L̂1,p(t1)|n,m〉〈n,m|L̂1,−p(t2)|0, 0〉
× eip�(t1−t2) f0,0(s1z, s2z, 0). (10)

Introducing the notations

ψ1(t1, t2) =
∫ t2

t1

ω1(t
′) dt ′, ψ2(t1, t2) =

∫ t2

t1

ω2(t
′) dt ′

(11)
we write

f0,0(s1z, s2z, t) = f0,0(s1z, s2z, 0)

− iε
∑

n,m

∫ t

0
dt1 e−inψ1(t1,0)e−imψ2(t1,0)

× 〈0, 0|L̂1(t1)|n,m〉 fn,m(s1z, s2z, 0)

+ (−iε)2
∑

n,m,p

∫ t

0
dt1

∫ t1

0
dt2 e−inψ1(t1,t2)e−imψ2(t1,t2)

× 〈0, 0|L̂1,p|n,m〉〈n,m|L̂1,−p|0, 0〉
× eip�(t1−t2) f0,0(s1z, s2z, 0). (12)

Averaging over the initial phases, i.e. F(s1z, s2z, t) =
〈〈 f0,0(s1z, s2z, t)〉〉, and using the random phase approximation

ψ1(t1, t2) =
t2∫

t1

ω1(t ′) dt ′ ≈ ϕ1(t2)− ϕ1(t2), we end up with

〈〈
exp[inψ1,2(t2, t1)]

〉〉 = exp(−(t1 − t2)/τc)

× exp(−inω1,2(t1 − t2)). (13)

Here τc is the correlation time of the random phase. Taking
equation (12) into account we deduce then for the averaged
two-particle distribution function F(t) the dynamical equation

(up to second order in the field strength ε)

∂F

∂ t
= −iεe− 2t

τc

∑

n,m

e−i(nω1+mω2)t

× 〈0, 0|L̂1(t)|n,m〉 fn,m(s1z, s2z, 0)

− ε2 ∂

∂ t

∑

m,n,p

∫ t

0
dt1

∫ t1

0
dt2 e− 2(t1−t2)

τc e−inω1(t1−t2)

× e−imω2(t1−t2)eip�(t1−t2)

× 〈0, 0|L1,p|n,m〉〈m, n|L1,−p|0, 0〉F(s1z, s2z, t). (14)

The long-time behaviour (t � τc) is retrieved by shifting to the
new variables τ = t1 − t2, t1 = t1 in (14) and integrating over
τ which yields

∂F

∂ t
= −ε2

∑

n,m,p

1
2
τc

+ i(nω1 + mω2 − p�)

× 〈0, 0|L1 p|n,m〉〈m, n|L1,−p|0, 0〉F(s1z, s2z, t). (15)

For further progress explicit expressions for the matrix el-
ements 〈0, 0|L1,p|n,m〉〈m, n|L1,−p|0, 0〉 are needed. Fol-
lowing the standard procedure outlined in [21] we find after
some lengthy steps the following Fokker–Planck equation for
F(s1z, s2z, t):

∂F(s1z, s2z, t)

∂ t

= D

(
∂

∂s1z
(1 − s2

1z)
∂F

∂s1z
+ ∂

∂s2z
(1 − s2

2z)
∂F

∂s2z

)
,

D = ε2π

2�
= ε2T

4
.

(16)

Making the ansatz F(s1z, s2z) = F1(s1z)F2(s2z) the average
values of the spin projections s̄ j z are determined from

d

dt
s̄ j z =

∫ +1

−1
s jz
∂Fj

∂ t
ds jz = D

∫ +1

−1
s1z

∂

∂s jz
(1 − s2

j z)

× ∂Fj(s jz)

∂s jz
= −2Ds̄ jz; j = 1, 2;

s̄1,2z = s1,2z(0)e
−2Dt .

(17)

As discussed in [22] (for the case without an anisotropy field),
essential for the validity of this diffusion type dynamics is that
the underlying classical dynamics is chaotic in which case the
above derivations are justified.

The stroboscopic evolution of the spin variables before
(t0 − τ ) and after (t0 + τ ) applying the field pulses at t = t0 is
expressed as [22]

siz,n+1 = siz,n + εT
√

1 − s2
i z,n sinϕi,n,

ϕi,n+1 = ϕi,n + (Js jz,n+1 + 2βsiz − H0z)T

− εT
siz,n√

1 − s2
i z,n

cos ϕi,n .

(18)

The stability of the trajectories is deduced from the Jacobian
matrix [23] which also sets the condition for the chaotic regime

3
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Figure 2. The time evolution of s1z and s2z for the following
parameters of the system: J = 0.2, 2β = 0, 1, H0z = 0.2, ε = 0.057
and� = 100. τ0

T = 0.1, s1z(0) = 0.8, ϕ1(0) = 0, s2z(0) = −0.8,
ϕ2(0) = 0, T = 2π

�
and K0 = K ′ = 0.45 × 10−4.

as (〈· · ·〉t means time average)

|λi | > 1, K > 0,

λ1,2 = (2 + K )±√
(K + 2)2 − 4

2
,

λ3,4 = (2 − K )±√
(K − 2)2 − 4

2
,

(19)

K = K0

√
(β/J )2 + (1 − 2(β/J )2)s1⊥s2⊥〈cos ϕ1 cos ϕ2〉t ,

K0 = εT 2 J.
(20)

Hence we can tune to the chaotic regime by varying the
external field parameters, the constant of anisotropy β and
the coupling constant J between adjacent spins. For
evaluating averages of the form 〈· · ·〉t averages over time
correlation functions of the random phases 〈cos ϕ1 cos ϕ2〉
should be considered. For the correlation term we proceed as
follows: when deriving the diffusion equation we assumed that
correlation times of random phases are small with respect to
the diffusion scale τc � 2D

πε
= 1/�. Taking into account that

in this timescale values s1,2⊥ are slow in time, after averaging
the correlation functions over the time interval �t ∈ (0, 1/�)

we obtain K = K0

√
(β/J )2 + (1 − 2(β/J )2) επ2D s1⊥s2⊥τc(J ).

2.3. Discussions and numerical results

Having discussed the analytical structure of the spin dynamics
we compare the analytical predictions with full numerical
simulations of the problem. Note that our system is such that
the conditions of chaotic regime equations (19) and (20) can
be realized for arbitrary small perturbation ε > 0, K0 > 0.
However, the smallest values of ε, and corresponding K0 = K ′
that allow for an observable effect has to be found numerically.
At first, the external fields are tuned to K0 = K ′ = 0.45 ×
10−4 > 0. In accord with the analytical results stochastic

Figure 3. The same quantities as in figure 2: however, J = 0.2,
2β = 0.1, H0z = 0.2, ε = 0.04 and � = 100. τ0

T = 0.1,
s1z(0) = 0.9, ϕ1(0) = 0, s2z(0) = −0.9, ϕ2(0) = 0, T = 2π

�
and

K0 = 0.32 × 10−4 < K ′.

Figure 4. The same quantities as in figure 3: however, J = 0, β = 0,
H0z = 0.2, ε = 0.04 and � = 100. τ0

T = 0.1, s1z(0) = 0.9,
ϕ1(0) = 0, s2z(0) = −0.9, ϕ2(0) = 0, T = 2π

�
and K0 = 0.

switching of the initial spins’ direction occur accompanied by
a subsequent long-time stabilization (see figure 2). If the fields
are such that K0 < K ′ (i.e. K0 is very small) switching does
not happen (see figure 3), i.e. s1,2z is still an adiabatic invariant;
external fields lead to small fluctuations around the equilibrium
state. We note that in figure 3 the anisotropy field is finite but its
effect is hardly observable becomes of its smallness (β/J )2 =
0.06. The regular (but non-integrable) regime is reached by
applying very strong fields (εT � J , H0z � Jsz > 2βsz)
(cf equation (3)). In this case no stochastic switching occurs
(cf figure 4). The eigenfrequency of the system is given by the
constant magnetic field ω j (Siz) = J Siz + H0z + 2βs jz ≈ H0z.
Physically, effects related to the exchange interaction and to

4
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Figure 5. We consider a chain of ten interacting spins. We show here
the dynamics of the z components s5,z and s6,z of the spins labelled 5
and 6. Other parameters are J = 0.2, 2β = 0, 3, H0z = 0.2,
ε = 0.04 and � = 100. τ0

T = 0.1, sz
2n+1(0) = 0.9, sz

2n(0) = 0.9,
ϕi(0) = 0, T = 2π

�
, i = 1, N and N = 10.

the anisotropy field become negligible and we end up with the
familiar resonant switching scheme (this is true only during
the time when the external fields are on. Effects of exchange
and anisotropy govern the subsequent field-free dynamics. A
scheme for a field-induced deflection and freezing has been
proposed in [18]).

2.4. Finite spin chain

The EOM for a finite spin chain governing the dynamics of
each particular spin follows from (2) as

dsiz

dt
= −ε ∂Vi(ϕi , siz)

∂ϕi
,

dϕi

dt
= ωi (si−1z, siz, si+1z)+ ε

∂Vi(ϕi , siz)

∂siz
,

ωi (si−1z, siz, si+1z) = Jsi−1z + Jsi+1z + 2βsiz + H0z,

i = 1, . . . , N N + 1 = N.

(21)

If the variable field has a spatial extent such that only two spins
in the chain, labelled (k, k + 1), are affected then we find

dsiz

dt
= −(δi,k + δi,k+1)ε

∂Vi(ϕi , siz)

∂ϕi
,

dϕi

dt
= ωi (si−1z, siz, si+1z)+ (δi,k + δi,k+1)ε

∂Vi(ϕi , siz)

∂siz
,

siz(t) = constant if k �= i �= k + 1.

(22)

These equations show that the z component of the spins
subjected to the pulse have to be determined self-consistently.
The dynamics of the oscillation frequency of the spin’s
transverse components ϕ̇i , i = 1, . . . , N is determined by the
effective magnetic field as

ϕ̇i(t) = ωeff
i = γs H eff

i (t). (23)

Figure 6. The time dependence of the z component of the fifth spin
for the parameters J = 0.2, H0z = 0.2, β = 0, H0x = 1,
sz

2n+1(0) = 0.9, sz
2n(0) = −0.9, ϕi(0) = 0, i = 1, N and N = 10.

Here

H eff(t) = 1

γs

[
H0 + J (Si−1,z + Si+1,z)

+
(

2β − (δi,k + δi,k+1)
H0x(t)

Si⊥
cos(ϕi)

)
Si,z

]
.

This indicates that the spins subject to the pulses exchange
energy with their nearest neighbours (whose z components are
nevertheless constant). This process depends on the values of
the z components and on the effective frequency ωeff

i (t)s
z
i (t); a

demonstration of this phenomena is shown in figure 5.
A further tool for controlling the diffusion process is

to apply a constant field along the x axis. The system
dynamics is then chaotic, even without the periodic series of
pulses [4, 5]. Therefore, the z component of the spin is not an
adiabatic invariant and the mechanism of dynamical freezing
(DF) discussed above does not work. Figure 6 illustrates that,
if the amplitude of the magnetic field applied along the x axis
is strong enough H0x > H0z, then the longitudinal component
of the spin performs fast oscillations. In the other opposite case
H0x < H0z the orientation of the spin can be deflected but DF
again is not possible (cf figure 7).

After deflection of the spin to a desired angle, one can
completely freeze its orientation. The key point is the fact that,
in the absence of pulses, the z component of the spin projection
is an integral of motion. The system of equations in this case
has the form

ds j x

dt
= −J (s j−1,z + s j+1,z)s j y − H0zs j y,

ds j y

dt
= J (s j−1,z + s j+1,z)s j x + H0zs j x ,

ds jz

dt
= 0.

(24)

5
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Figure 7. The same as in figure 6: however, the parameters are
changed to J = 0.2, H0z = 0.2, H0x = 0.01, sz

2n+1(0) = 0.9,
sz

2n(0) = −0.9, ϕi (0) = 0, i = 1, N and N = 10.

For simplicity we assumed here that β = 0. After solving (24)
one obtains

s j x = s j x(t0) cos(ω j0t + ϕ0),

s j y = s j y(t0) sin(ω j0t + ϕ0), s jz = s jz(t0),
(25)

where ω j(s j−1z(0); s j+1z(0)) = J (s j−1z(0) + s j+1z(0)) +
H0z = ω j0, and s jz(t0) corresponds to the desired orientation
of the spin, achieved after the action of the pulses in the time
interval 0 < t < t0 (cf figure 8).

2.5. Arnold diffusion

Results of section 2.4 show that, even in the case of a long
spin chain, the orientation of spins can still be controlled.
This follows from resonance overlapping and the existence of
diffusion. However, the question of what kind of diffusion we
have is still outstanding. If the dimension of the system is
more than N > 2, the dynamics is much more involved and
the emergence of new physical phenomena is expected. We
recall the key idea of KAM theory: the size of the destroyed
torus is small and the domain of their location is surrounded
by an invariant torus. This situation changes if an invariant
torus crosses the domain of the destroyed torus location. This
is possible if and only if N > 2. The phenomenon of universal
diffusion along the net formed due to the torus crossing was
discovered by Arnold [6]. Here we consider the mechanism of
the formation of the stochastic net in the case of a spin chain:

H = H0(s
z
1, . . . , sz

N )+ εV (ϕ1, . . . , ϕN ). (26)

Note, the frequencies of the unperturbed motion on the N-
dimensional torus is a function of the three actions

ωi (s
z
i−1, sz

i , sz
i+1) = Jsz

i−1 + Jsz
i+1 + 2βsz

i + H0z,

i = 1, N . (27)

Figure 8. The z components of the spins labelled 5 and 6 for the
parameters: J = 0.2, H0z = 0.2, H0x = 0.01, sz

2n+1(0) = 0.9,
sz

2n(0) = −0.9, ϕi (0) = 0, i = 1, N and N = 10.

We collect the resonant torus defined by the condition:

N∑

j=1

n jω j = 0, (28)

where n j are integer numbers. For each set of numbers there
exists a multitude of solutions s0

z ≡ (sz(0)
1 , . . . , sz(0)

N ). Each
solution determines the resonant torus. For the formation of
the Arnold diffusion the absences of degeneracy is essential:

det

∣∣∣∣
∂2 H0

∂sz
i ∂sz

j

∣∣∣∣ �= 0, i, j = 1, N . (29)

In the case of our system due to the form of the matrix

∂2 H0

∂sz
i ∂sz

j

=

⎛

⎜⎜⎜⎜⎝

2β J 0 0 ·
J 2β J 0 ·
0 J 2β J ·
0 0 J 2β ·
· · · · ·

⎞

⎟⎟⎟⎟⎠
, (30)

the condition of the absence of degeneration (29) leads to the
polynomial expression:

det

∣∣∣∣
∂2 H0

∂sz
i ∂sz

j

∣∣∣∣ = G(J, β, N) �= 0. (31)

The explicit form of the expression (31) also depends on the
system’s size (in addition to the dependence on the parameters
β, J ). For large systems we obtain the following asymptotic
expressions:

G(J, β, N) =
{

J N if J > β ,

2NβN if J < β .
(32)

From this relation we can conclude that the universal diffusion
is possible for any nonzero J, β , and identify the numerical

6
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results obtained for the spin chain with the Arnold diffusion.
For an analytical estimation we consider the minimal possible
dimension. Therefore, in what follows, without loss of
generality we shall restrict ourselves to the case N = 3. From
equation (28) we find

n1ω1 + n2ω2 + n3ω3 = 0, (33)

where each frequency depends on the three actions according
to (27). In the frequency space (ω1, ω2, ω3) equation (33)
determines a family of surfaces. On the energy surface we have

H0(s
z
1, sz

2 , sz
3) = E . (34)

This equation is also the equation determining the surface (33).
Therefore, the resonant torus have a common part along the
curves, defined as the solutions of the set of equations (33)
and (34). The time-dependent perturbation leads to a widening
of these curves and to the formation of the stochastic net.

In order to provide a topological interpretation of this
phenomenon we will consider the simplest case of three spins.
In this case the explicit form of equations (33) and (34) is

(J +2β)(ω2
1+ω2

2+ω2
3)−2ω1ω2−2ω1ω3−2ω2ω3 = E, (35)

and
n1ω1 + n2ω2 + n3ω3 = 0. (36)

Here E = (8β2 + 4β J − 4J 2)H0 − 3H 2
0z(2β − J ) is a

rescaled energy. From equation (36) one can exclude frequency
ω1 = − n2

n1
ω2 − n3

n1
ω3 and rewrite equation (35) as a function

of the two frequencies (ω3, ω2). Clearly, the shape of the
implicit plot for ω3(ω2) depends on the values of parameters
(n1, n2, n3). Therefore, we expect that the ω3(ω2), plotted
for different inner resonances (n1, n2, n3), should cross at
some points. Now one can construct implicit plots expressing
frequencies as a function of each other for different resonances
(cf figure 9). We see that, at some points, trajectories cross
each other. Due to topological reasons, such nodal points are
possible if and only if the system dimension is at least N = 3
or higher. Nodal points are crossing points between different
resonances. If an external adiabatic perturbation is applied the
dynamic near the nodal points becomes unpredictable and this
leads to the Arnold diffusion [6].

In the general dimensional case (N � 1), the geometrical
interpretation is less illustrative and much more complicated.
Since we have to deal with (N − 1)-dimensional hyper-
curves in the N-dimensional hyperspace, the basic concept
is, however, the same [20]. This conclusion manifests
fundamental features of the multidimensional nonlinear
dynamical systems. The diffusive motion of the system in
the stochastic net is named as Arnold diffusion. Therefore,
the diffusion equation (16) is still justified. However, the
coefficient of diffusion for Arnold diffusion is defined by an
expression other than equation (16), namely [6]

DA = E2εH0ze
−1/εa(N)

. (37)

Here E is the system’s energy, a(N) is a dimensional-
dependent scaling constant with an upper limit determined by
the Arnold inequality relation [6]:

a(N) <
2

6N(N − 1)+ 3N + 14
. (38)

Figure 9. Topological structure of the inner resonances on the
frequency plane (ω3, ω2) plotted for different resonances:
(n2 = n1, n3 = n1), (n2 = 2n1, n3 = 3n1), (n2 = 3n1, n3 =
n1), (n2 = 5n1, n3 = 7n1). Further values: J = 0.2, 2β = 0.3.

Obviously, for N � 1, a(N) �→ 0 and the coefficient of the
Arnold diffusion takes the simpler form

DA = 1

e
εE2 H0z. (39)

Comparing equation (39) with the diffusion coefficient
obtained for the case of two spins, i.e. equation (16), we find

DA

D
= 4E2 H0z

eεT
. (40)

This relation is important in that it delivers information on
when the mechanism of stochastic switching and dynamical
freezing are more efficient DA

D > 1 for a long spin chain, as
compared to the case of a pair of spins.

2.6. Role of anisotropy field

Here we discuss the connection between the anisotropy field
and Arnold diffusion. For the Arnold diffusion to occur the
Jacobi matrix has to be non-degenerate. We note, however,
that the Jacobi matrix becomes degenerate in some cases if the
anisotropy field is absent, as can be inferred from the structure

7



J. Phys.: Condens. Matter 21 (2009) 356001 L Chotorlishvili et al

of the Jacobi matrix. For example, in the simplest case of three
spins

det

∣∣∣∣∣
∂2 H0

∂Sz
i ∂Sz

j

∣∣∣∣∣ = −4J 2β + 8β3 �= 0, if β �= 0.

Evaluating the determinant for different numbers of spins
we find that with the anisotropy field being applied it is
always non-degenerate, while for a particular N , it becomes
degenerate in the absence of the anisotropy field.

3. Low temperature limit

In this section we consider the dynamics in the continuous
limit. By a proper choice of pulse parameters we were able
to deflect the spin orientation diffusively to a desired angle.
Switching off the pulses, the dynamics remain quasi-frozen
(is equivalent to the spin z component being an integral of
motion). The question we pose here is that, what happens if
upon stochastic switching and freezing we apply a constant
magnetic field along the x axis. We recall that applying a
constant field to the equilibrium (initial) state along the x axis
invalidates the use of the KAM theory and the mechanism
of SC does not work (cf equation (5)). Before we deal with
this problem in more detail we set the limits of continuous
approximation. Due to the constant magnetic field, applied
along the x axis, the sz component is not an integral of
motion any more. Therefore, excitations similar to spin
waves propagate along the spin chain. These waves are
not completely analogous to spin waves because the non-
conservation of sz(t) is not related to flip-flop processes, but
requires a transversal magnetic field. However, the wavelength
of such excitations can be evaluated in a manner similar to
the spin waves’ case [24]. If the wavelength is larger than
the distance between the spins λ � a a continuous treatment
is justified. Taking into account the expression for the wave
frequency

ω = 4|J |S
h̄

2π

λ
a, (41)

One concludes that the validity of the continuous approxima-
tion depends on the temperature

T � J h̄

kB
. (42)

Here kB is the Boltzmann constant. Thus, the continuous
approximation corresponds to a low temperature approxima-
tion. For anti-ferromagnetic materials FeCl2 or CoCl2 we have
J = 1.23 × 1012 Hz, from (42) we infer for a temperature
regime of the continuous model T < 3 K.

Returning back to the spin chain in a static magnetic field
along the x axis, the EOM is

ds j x

dt
= −J (s j−1,z + s j+1,z)s j y − H0zs j y,

ds j y

dt
= J (s j−1,z + s j+1,z)s j x + H0zs j x − H0xs j z,

ds jz

dt
= H0xs j y.

(43)

Considering that

s j x → sx(x; t), s j y → sy(x; t),

s jz → sz(x; t)
(44)

s j−1;z = sx(x, t)− a
∂sz(x, t)

∂x
+ a2

2

∂2sx,t

∂ t2
,

s j+1;z = sx(x, t)+ a
∂sz(x, t)

∂x
+ a2

2

∂2sx,t

∂ t2
,

(45)

from (43) we deduce that

∂sx

∂ t
= −Jsy

(
2sz + ∂2sz

∂x2
a2

)
− H0zsy,

∂sx

∂ t
= Jsx

(
2sz + ∂2sz

∂x2
a2

)
− H0xsz + H0zsx ,

∂sz

∂ t
= H0xsy .

(46)

In the low temperature regime we can neglect quadratic terms
in (46) and obtain

ẋ = −δy − γ yz, ẏ = δx − z + γ xz,

ż = y.
(47)

Here we introduced the following notations:

δ = H0z

H0x
, γ = 2J

H0x
, t → H0xt,

sx = x, sy = y, sz = z.

Equation (47) is derived in the absence of an anisotropy field.
However, for the role of the anisotropy field we remark the
following: the Zeeman field applied along the z axis is very
strong H z

0 > J |Sz
i−1| + J |Sz

i+1| + 2β|Sz
i |. The eigenfrequency

is constant and we have no effect of a dynamical shift
ωi (S

z
i−1, Sz

i+1, Sz
i ) = J Sz

i−1 + J Sz
i+1 + 2βSz

i + H z
0 ≈ H z

0 .
Inclusion of a finite anisotropy field leads to a rescaling of the
small parameter γ in equation (47), i.e. γ = 2J

H0x
→ 2J+2β

H0x
.

Hence, we conclude that in this particular case the anisotropy
field has no principal dynamical effect. Equation (47) with re-
scaled parameter γ = 2J+2β

H0x
is still valid in the presence of an

anisotropy field.
When solving (47), we assume for the initial values the

spin orientations achieved after the action of pulses. In order to
obtain analytical solutions we utilize the canonical perturbation
theory (cf, e.g., [25]). The parameter γ is assumed to be small.
The first step is to rewrite (47) in a canonical form. This can
be done using the following transformation (for details, see the
appendix):

x1 = 2δx − 2z, y1 = 2λy, z1 = 1

δ
x + z,

λ =
√

1 + δ2.

(48)

8
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Figure 10. The longitudinal sz , and the transversal s⊥ =
√

s2
x + s2

y spin components as a function of time. J = 0.05, H0z = 1 and H0x = 0.1.

Graph (a) shows the analytical solutions given by equation (52), whereas in graph (b) the numerical integration of the system of equation (47)
is depicted.

Equations (47) assume then the form

ẋ1 = −λy1 + δγ

2λ3
y1x1 − γ δ3

λ3
y1z1,

ẏ1 = λx1 + γ δ(δ2 − 1)

λ3
x1z1 − γ δ

2λ3
x2

1 + 2γ δ3

λ3
z2

1,

ż1 = γ

4λ3δ
y1x1 − γ δ

2λ3
y1z1.

(49)

We seek a solution of (49) having the structure

x1 = Cx1
1 + C2x (2)1 + C3x (3)1 + C4x (4)1 · · · ,

y1 = Cy1
1 + C2 y(2)1 + C3 y(3)1 + C4 y(4)1 · · · ,

z1 = Cz1
1 + C2z(2)1 + C3z(3)1 + C4z(4)1 · · · ,

(50)

and in addition we use the re-scaled time

t = τ

λ
(1 + h2C2 + h3C3 + · · ·). (51)

With an accuracy up to third order in γ we find the solution
of (47) to be

sx = δ cos τ

λ
+ γ (1 + 2δ2) sin2(τ )

2λ4

− γ 2δ(9 + 4δ2) cos(τ ) sin2(τ )

16λ7
,

sy = sin(τ )− γ δ cos(τ ) sin(τ )

λ3

+ γ 2(1 + 4δ2)(−5 sin(τ )+ 3 sin(3τ ))

64λ6
,

sz = −cos τ

λ
− γ δ sin2(τ )

2λ4

− γ 2(−1 + 4δ2) cos(τ ) sin2(τ )

16λ7
.

(52)

Figure 10 demonstrates that these analytical solutions are in
good agreement with the exact numerical simulation of the
system (47). Figure 10 shows that a constant magnetic field
results in oscillations of the spin’s longitudinal component in
a controlled manner. If the amplitude of the magnetic field is
small, nonlinear effects become more important (cf figure 11).

4. Quantum mechanical consideration and the
problem of DF

As stated above, the classical analysis is useful if the atoms in
the chain have a large magnetic moment. In fact, for a finite
chain of manganese (Mn) atoms [1] the classical approach
proved to be adequate [2]. This situation changes, however,
for small spins where the dynamics becomes dominated
by quantum effects. What is needed for our quantum
consideration is the structure of the energy spectrum in the
regime where the underlying classical dynamics is chaotic [4].
The point of interest here is that whether quantum effects
invalidate the SC and, in particular, die on dynamical freezing.
To this end we use the concept of quantum geometry [26, 28]
in the way done in [8, 9] to study DF. Let us consider two
quantum states �1 and eiϕ�1. The distance in Hilbert space
between them can be characterized by the quantity [26–28]

D1(�1,�2) = min
ϕ

∥∥�1 − eiϕ�2

∥∥.

The minimal phase ϕm is found by exterminating ‖�1−eiϕ�2‖
and noting that ‖�1 −�2‖ = 〈�1|�2〉1/2, which yields

exp(iϕm) = 〈�1|�2〉
|〈�1|�2〉| . (53)

Therefore, we write for the distance D1

D1(�1,�2) = √
2 − 2|〈�1|�2〉|.

9
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Figure 11. The same as in figure 10 with the same meaning of the labels. The parameters of the system are, however, changed to J = 0.05,
H0z = 0.2 and H0x = 0.1.

For the same purpose as for D1, one may also use the Fubini–
Study metric [27]:

D2
2(�(t),�(0)) = 4(1 − |〈�(t)|�(0)〉|2). (54)

In both approaches the key quantity is the so-called Bargmann
angle [8]:

cos θB(t) = A(t) = |〈�(0)|�(t)〉|. (55)

In analogy to the classical deflection in quantum control
problems, the Bargmann angle can be considered as the
‘quantum deflection’. Essential for further progress is our
(classical) finding that SC and DF occur in the classical chaotic
regime. This calls for the use of random matrix theory (RMT)
to inspect the quantum dynamics [29–31]. To this end we
write (2) as

Ĥ (t) = Ĥ0 + V̂ (t), (56)

where Ĥ0 is time-independent. Now we employ the established
Floquet-operator method [30] and the quantum map and infer
for the Bargmann angle

A2(t) = 1

N2

⎛
⎜⎝N +

N∑

n,m=1
n �=m

cos[t (ϕn − ϕm)]
⎞
⎟⎠ . (57)

Here ϕn stands for the eigenphases of the Floquet operators
and N is the Hilbert space dimension. From this relation it is
evident that, starting at t = 0 with two completely coherent
states, i.e. A(t = 0) = 1, decoherence sets in for t �= 0.
To put the classical predictions of section 3 into a quantum
perspective we note the following: In the classical regular
regime, as identified above, the time-dependent perturbation
V̂ (t) acts adiabatically and does not alter the structure or the
symmetry of the quantum spectrum. In this case we expect
the Bargmann angle to be time-periodic with typical quantum
revivals. In contrast, in the classical chaotic regime, V̂ (t)
changes qualitatively the quantum spectrum.

Starting from the (classically) regular case we conclude
that, if pair excitations are neglected, then the energy spectrum
of the unperturbed part has the form

En = (n − 1 − N/2)H0z + 1

4
J (N − 4n + 3)+ βN

4
. (58)

With this spectrum we infer for the Bargmann angle
(equation (57)) the expression

A2(t) = 1

N2

(
sin(N + 1/2)t − sin(t/2)

2 sin(t/2)

)2

+ 1

N2

(
cos(t/2)− cos(N + 1/2)t

2 sin(t/2)

)2

. (59)

As is evident from figure 12, if the underlying classical
dynamics is regular, the time dependence of the Bargmann
angle is periodic and the system is characterized by quantum
revivals.

To deal quantum mechanically with the classically chaotic
regime we follow [30] and employ a Gaussian orthogonal
ensemble [30]:

P(ϕ1, . . . , ϕN ) =
∏

n>m

(ϕn − ϕm) exp

(
−

N∑

n=1

ϕ2
n

)
. (60)

We note here that in general the distribution function (60)
includes correlations between all N levels. If the number
of correlated levels is n, then the n < N level-correlated
distribution function is

Pn(ϕ1, . . . , ϕn)

= N !
(N − n)!

∫
Pn(ϕ1, . . . , ϕN ) dϕn+1 · · · dϕN . (61)

The structure of the expression (57) suggests that the second-
order correlated level distribution function P2(ϕn, ϕm) is
sufficient (each term in the sum contains two phases). Upon
straightforward calculations we reduced P2(ϕn, ϕm) to

P2(ϕn, ϕm) = KN (ϕn, ϕn)KN (ϕm, ϕm)

− KN (ϕn, ϕm)KN (ϕm, ϕn),

10
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Figure 12. Bargmann angle θB(t) as a function of re-scaled time
t ≡ t/(H0z + J ) and H0z = J = 0, 2 calculated from (59).

with

K (ϕn, ϕm) =
N∑

k=1

φk(ϕn)φk(ϕn),

and

φk(ϕ) = 1

(2nn!√π)1/2 Hk(ϕ) exp

[
−ϕ

2

2

]
.

Hn(ϕ) are Hermite polynomials. For 〈A2(t)〉P2 we find (for
N � 1)

〈A2(t)〉P2 = C exp[−t2/2]
{ N∑

n,m

L0
n(t

2/2)L0
m(t

2/2)

−
√
π

4

N∑

m=1

N∑

n=1

n!
2m−nm! tm−n(Lm−n

n (t2/2))2

−
√
π

4

N∑

m=1

m−1∑

n=1

n!
2m−nm! tm−n−1(Lm−n−1

n (t2/2))2
}

(62)

where Lm
n (t

2/2) are Laguerre polynomials. The constant C we
find from the condition 〈A2(0)〉P2 = 1. Dynamical freezing
(DF) means then a stabilization over time of the quantum
distance [8, 9] quantified by the Bargmann angle. To test for
this situation we numerically solve for (62); a typical example
is shown in figure 13. These calculations are performed
for parameters appropriate for the classically chaotic regime,
e.g. those of figure 2. The interpretation of figure 13 is that SC
drives the system diffusively to the target state |�(t)〉, which
in this case is orthogonal to |�(0)〉. The Bargmann angle is
therefore deflected within a time tD determined by the diffusion
constant to the value θB(tD) ∼ π/2. DF is then shown by a
small variation of θB(tD) for t > tD.

4.1. Conclusions

For an exchange-coupled, nonlinear spin chain and in the
presence of a (uniaxial) magnetic anisotropy and external
driving fields, stochastic switching is possible if the field
parameters are chosen such that the underlying classical
dynamics is chaotic. The switching mechanism is identified
to be Arnold-type diffusion. This we concluded analytically
and substantiated by full numerical semiclassical and quantum
calculations. We also inspected the possibility of dynamical

Figure 13. The time evolution of the Bargmann angle θB(t), as
calculated using equation (62) and averaged over the random
quantum phases. The parameters of the driving fields and the spin
chains are the same as in figure 2, i.e. we are in the stochastic
switching regime.

freezing, i.e. stabilizing the target state beyond the switching
time.

Acknowledgments

This project is financially supported by the Georgian National
Foundation (grants GNSF/STO 7/4-197 and GNSF/STO 7/4-
179). The financial support by the Deutsche Forschungsge-
meinschaft (DFG) through SFB 762 and though SPP 1285 is
gratefully acknowledged.

Appendix

The canonical Lyapunov system has the general structure

ẋ = −λy + X (x, y, z1, . . . , zm);
ẏ = λx + Y (x, y, z1, . . . , zm);

żs =
m∑

j=1

bs j + Zs(x, y, z1, . . . , zm);

(s = 1, 2, . . . ,m; m = n − 2).

(A.1)

We seek a reduction of this system of equations using the
canonical transformation

ẋ = −δy − γ yz, ẏ = δx − z + γ xz,

ż = y.
(A.2)

We are interested in the linear part of equation (A.2), i.e.

ẋ = −δy, ẏ = δx − z, ż = y. (A.3)

From the coefficients of equation (A.3) we can construct the
following matrix:

a =
⎛

⎝
0 −δ 0
δ 0 −1
0 1 0

⎞

⎠ . (A.4)
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We consider now the linear transformation

ξ1 = γ11x + γ12y + γ13z,

ξ2 = γ21x + γ22y + γ23z,

ξ3 = γ31x + γ32y + γ33z.

(A.5)

In the new variables equation (A.3) is cast as

dξi

dt
= λiξi i = 1, 2, 3. (A.6)

Taking equations (A.5) and (A.3) into account we infer from
equation (A.6) that

(a11 − λi )γi1 + a21γi2 + a31γi2 = 0,

a12γi1 + (a22 − λi )γi2 + a32γi3 = 0,

a13γi1 + a23γi2 + (a33 − λi )γi3 = 0.

(A.7)

Equating the determinant to zero
∣∣∣∣∣∣

−λi −δ 0
δ −λi −1
0 1 −λi

∣∣∣∣∣∣
= 0, (A.8)

we find

λ1,2 = ±iλ, λ3 = 0, λ =
√

1 + δ2. (A.9)

According to (A.7) this gives the following solutions for the
matrix:

γ11 = −δ, −γ12 = −iλ, γ13 = 1;
γ21 = −δ, −γ22 = −iλ, γ23 = 1;

γ31 = −1

δ
, −γ22 = 0, γ33 = 1.

(A.10)

So the canonical transformation (A.5) has the form

ξ1 = −δx − iλy + z; ξ2 = −δx + iλy + z;

ξ3 = −1

δ
x + z.

(A.11)

The inverse transformation is

x = δ

λ2

(
ξ3 − ξ1 + ξ2

2

)
, y = i

2λ
(ξ1 + ξ2),

z = ξ1 + ξ2 + 2δ2ξ3

2λ2
.

(A.12)

Using equation (A.10) we obtain then for equations of motion
in the variable ξi :

ξ̇1 = iλξ1, ξ̇2 = −iλξ2, ξ̇3 = 0. (A.13)

To reduce our system of equations to the canonical form, one
more transformation is needed:

x1 = −(ξ1 + ξ2), y1 = i(ξ1 − ξ2), z1 = ξ3.

(A.14)

Taking equations (A.10) and (A.11) into account we obtain

x1 = 2δx − 2z; y1 = 2λy; z1 = 1

δ
x + z. (A.15)

The inverse transformation is

x = δ

λ2

(
z1 + x1

2

)
, y = 1

2λ
y1,

z = 1

λ2
(−x1 + 2δ2z1).

(A.16)

Using (A.15) and (A.16) we can finally rewrite the set of
equations in the canonical form:

ẋ1 = −λy1 + δγ

2λ3
y1x1 − γ δ3

λ3
y1z1,

ẏ1 = λx1 + γ δ(δ2 − 1)

λ3
x1z1 − γ δ

2λ3
x2

1 + 2γ δ3

λ3
z2

1,

ż1 = γ

4λ3δ
y1x1 − γ δ

2λ3
y1z1.

(A.17)
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Phys. Rev. B 72 224437

Lounis S, Dederichs P H and Blügel S 2008 Phys. Rev. Lett.
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